This study investigates the formation mechanisms of oligomeric phenyl silanols, focusing on polyhedral oligomeric silsesquioxane (POSS) and double-decker silsesquioxane (DDSQ) derivatives. Combining literature reports and crystal structures of solvated derivatives obtained in our laboratory, we show that the solvent choice significantly influences their structures. POSS-based silanols prefer aprotic solvents like THF, preserving dimerization, while double-deckers form stable architectures in protic solvents like isopropanol. This discrepancy arises from different stabilization mechanisms. Our findings enhance our understanding of hydrolytic condensation involving trimethoxyphenylsilane and suggest aprotic solvents for efficient reactions with POSS-based silanols.