The Trichoderma genus is well known as one of the most valuable biological control agents against several phytopathogens used in different plant species. Managing phytopathogenic fungi using the Trichoderma genus through various associated antifungal mechanisms is a sustainable and eco-friendly strategy that reduces the harmful presence of pathogens in soil, roots and aerial parts of plants. However, using biocontrol agents combined with chemical pesticides has evidenced further potential to reduce pathogen growth and benefit plant development. A better characterization of active metabolites secreted by Trichoderma and their mechanisms of action is necessary to improve its use as a biocontrol agent. This review summarizes current evidence on Trichoderma spp., used as a biocontrol against Fusarium oxysporum, the active secondary metabolites secreted by the former fungi, and the effect of three widely used agrochemicals to control the latter, namely Mancozeb, Chlorothalonil, and Propiconazole. A total of 155 studies were selected and used to extract information that was analyzed, resulting in more than 590 identified secondary metabolites. Fifty-four percent of these have at least one biological function. Results highlight the potential of T. harzianum and T. reesei as biological control agents to control Fusarium oxysporum. The antifungal activity of T. Espirale is associated with enzymatic reactions. Additional findings show that management of diseases caused by F. oxysporum can be combined by using Trichoderma as biological control and agrochemicals to reach: (1) higher access to the different plant tissues; (2) higher degradation of the cell wall; and (3) and activation of oxidative metabolism of Trichoderma.
Keywords: Trichoderma, secondary metabolites, fungicide, mycoparasitism, biocontrol, Fusarium oxysporum