2016
DOI: 10.3390/ijgi5010001
|View full text |Cite
|
Sign up to set email alerts
|

What is an Appropriate Temporal Sampling Rate to Record Floating Car Data with a GPS?

Abstract: Abstract:Floating car data (FCD) recorded with the Global Positioning System (GPS) are an important data source for traffic research. However, FCD are subject to error, which can relate either to the accuracy of the recordings (measurement error) or to the temporal rate at which the data are sampled (interpolation error). Both errors affect movement parameters derived from the FCD, such as speed or direction, and consequently influence conclusions drawn about the movement. In this paper we combined recent find… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(13 citation statements)
references
References 52 publications
0
12
0
1
Order By: Relevance
“…Die Positionsgeräte zeichnen die Bewegung und räumliche Verortung sowie die dazugehörige Zeitkomponente auf. Dabei besteht jeder aufgezeichnete Datenpunkt aus einer Positionskomponente mit dem entsprechenden Zeitstempel und verweist dadurch auf die räumlich-zeitliche Position des Sensors (Ranacher et al 2016). Eine Erweiterung zu den soeben erläuterten FCD stellen sogenannte Extended Floating Car Data (xFCD) dar.…”
Section: Hintergrund: Fcd Xfcd Und Lärmanalyseunclassified
“…Die Positionsgeräte zeichnen die Bewegung und räumliche Verortung sowie die dazugehörige Zeitkomponente auf. Dabei besteht jeder aufgezeichnete Datenpunkt aus einer Positionskomponente mit dem entsprechenden Zeitstempel und verweist dadurch auf die räumlich-zeitliche Position des Sensors (Ranacher et al 2016). Eine Erweiterung zu den soeben erläuterten FCD stellen sogenannte Extended Floating Car Data (xFCD) dar.…”
Section: Hintergrund: Fcd Xfcd Und Lärmanalyseunclassified
“…Trajectory data are induced with sampling error for numerous reasons (Hsueh & Chen, 2018; Lou et al, 2009; Ranacher, Brunauer, Van der Spek, et al, 2016), and this strongly affects the correct values of the velocity, acceleration, and change of direction of the moving object (Ranacher, Brunauer, Van der Spek, et al, 2016). Hence, a sampling frequency greater than the Nyquist rate is desirable to avoid sampling errors in trajectory data (Hsueh and Chen, 2018; Lou et al, 2009; Ranacher, Brunauer, Van der Spek, et al, 2016).…”
Section: Literature Reviewmentioning
confidence: 99%
“…Travel mode detection is done after extracting feature values (e.g., velocity, acceleration, and change of direction) from trajectory data, and training a classification algorithm using the extracted feature values (Etemad, Soares Júnior, & Matwin, 2018; Dabiri et al, 2019). Existing methods of travel mode detection struggle with accuracy due to the errors present in the extracted features (Ranacher, Brunauer, Trutschnig, et al, 2016; Ranacher, Brunauer, Van der Spek, et al,2016). For many trajectory data, mode detection accuracy scores drop below 50% due to these errors.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, a GPS module is mandatory. Depending on the use case, Ranacher et al (2016) propose an acquisition frequency of 1/2 Hz to 1/10 Hz. Within a defined interval, records are acquired and transmitted to a central server.…”
Section: Extended Floating Car Data (Xfcd)mentioning
confidence: 99%