We develop a universal distributional calculus for regulated volumes of
metrics that are singular along hypersurfaces. When the hypersurface is a
conformal infinity we give simple integrated distribution expressions for the
divergences and anomaly of the regulated volume functional valid for any choice
of regulator. For closed hypersurfaces or conformally compact geometries,
methods from a previously developed boundary calculus for conformally compact
manifolds can be applied to give explicit holographic formulae for the
divergences and anomaly expressed as hypersurface integrals over local
quantities (the method also extends to non-closed hypersurfaces). The resulting
anomaly does not depend on any particular choice of regulator, while the
regulator dependence of the divergences is precisely captured by these
formulae. Conformal hypersurface invariants can be studied by demanding that
the singular metric obey, smoothly and formally to a suitable order, a Yamabe
type problem with boundary data along the conformal infinity. We prove that the
volume anomaly for these singular Yamabe solutions is a conformally invariant
integral of a local Q-curvature that generalizes the Branson Q-curvature by
including data of the embedding. In each dimension this canonically defines a
higher dimensional generalization of the Willmore energy/rigid string action.
Recently Graham proved that the first variation of the volume anomaly recovers
the density obstructing smooth solutions to this singular Yamabe problem; we
give a new proof of this result employing our boundary calculus. Physical
applications of our results include studies of quantum corrections to
entanglement entropies.Comment: 31 pages, LaTeX, 5 figures, anomaly formula generalized to any bulk
geometry, improved discussion of hypersurfaces with boundar