Background:
Oculoorbital disproportion in patients with craniosynostosis has similarities and dissimilarities between syndromic and nonsyndromic cases. The authors hypothesized that these two conditions have specific individual influences as they relate to development of the orbital and periorbital skeletons.
Methods:
A total of 133 preoperative computed tomography scans (nonsyndromic bicoronal synostosis, n = 38; Apert syndrome bicoronal synostosis subtype, n = 33; Crouzon syndrome bicoronal synostosis subtype, n = 10; controls, n = 52) were included. Craniometric and volumetric analyses related to the orbit and periorbital anatomy were performed.
Results:
Orbital cavity volume was mildly restricted in nonsyndromic bicoronal synostosis (7 percent, p = 0.147), but more so in Apert and Crouzon syndromes [17 percent (p = 0.002) and 21 percent (p = 0.005), respectively]. The sphenoid side angle in Apert syndrome was wider than when compared to Crouzon syndrome (p = 0.043). The ethmoid side angle in Apert patients, however, was narrower (p = 0.066) than that in Crouzon patients. Maxilla anteroposterior length was more restricted in Apert syndrome than Crouzon syndrome (21 percent, p = 0.003) and nonsyndromic cases (26 percent, p < 0.001). The posterior nasal spine position was retruded in Crouzon syndrome (39 percent, p < 0.001), yet the anterior nasal spine position was similar in Apert and Crouzon syndromes.
Conclusions:
Orbit and periorbital malformation in syndromic craniosynostosis is likely the combined influence of syndromic influences and premature suture fusion. Apert syndrome expanded the anteriorly contoured lateral orbital wall associated with bicoronal synostosis, whereas Crouzon syndrome had more infraorbital rim retrusion, resulting in more severe exorbitism. Apert syndrome developed maxillary hypoplasia, in addition to the maxillary retrusion, observed in Crouzon syndrome and nonsyndromic bicoronal synostosis patients.
CLINICAL QUESTION/LEVEL OF EVIDENCE:
Risk, II.