The present work provides theoretical and experimental foundations for the ability of dinitrosyl iron complexes (DNICs) with thiol
-
containing ligands to be not only the donors of neutral NO molecules, but also the donors of nitrosonium cations (NO
+
) in living organisms ensuring S-nitrosation of various proteins and low-molecular-weight compounds. It is proposed that the emergence of those cations in DNICs is related to disproportionation reaction of NO molecules, initiated by their binding with Fe
2+
ions (two NO molecules per one ion). At the same time, possible hydrolysis of iron-bound nitrosonium cations is prevented by the electron density transition to nitrosonium cations from sulfur atoms of thiol-containing ligands, which are included in the coordination sphere of iron. It allows supposing that iron in iron–nitrosyl complexes of DNICs has a
d
7
electronic configuration. This supposition is underpinned by experimental data revealing that a half of nitrosyl ligands are converted into S-nitrosothiols (RSNOs) when those complexes decompose, with the other half of those ligands released in the form of neutral NO molecules.