An emerging theory of schizophrenia postulates that hypofunction of adenosine signaling may contribute to its pathophysiology. This study was designed to test the "adenosine hypothesis" of schizophrenia and to evaluate focal adenosine-based strategies for therapy. We found that augmentation of adenosine by pharmacologic inhibition of adenosine kinase (ADK), the key enzyme of adenosine clearance, exerted antipsychotic-like activity in mice. Further, overexpression of ADK in transgenic mice was associated with attentional impairments linked to schizophrenia. We observed that the striatal adenosine A 2A receptor links adenosine tone and psychomotor response to amphetamine, an indicator of dopaminergic signaling. Finally, intrastriatal implants of engineered adenosine-releasing cells restored the locomotor response to amphetamine in mice overexpressing ADK, whereas the same grafts placed proximal to the hippocampus of transgenic mice reversed their working memory deficit. This functional double dissociation between striatal and hippocampal adenosine demonstrated in Adk transgenic mice highlights the independent contributions of these two interconnected brain regions in the pathophysiology of schizophrenia and thus provides the rationale for developing local adenosine augmentation therapies for the treatment of schizophrenia.
IntroductionDespite extensive research over half a century, schizophrenia remains a major health concern, affecting more than one percent of the population. Two hypotheses, those of dopaminergic hyperfunction (1) and glutamatergic hypofunction (2), are widely accepted conceptual frameworks for understanding the pathophysiology of schizophrenia and for the development of drugs for the treatment of either dopamine-related or glutamate-related symptoms of the disease (2, 3). This study addresses a third hypothesis, the "adenosine hypothesis of schizophrenia," which has recently been proposed as a novel concept to integrate the dopaminergic hyperfunction and glutamatergic hypofunction hypotheses (4).The purine ribonucleoside adenosine modulates neurotransmission through activation of 4 types of G protein-coupled adenosine receptors (ARs), A 1 R, A 2A R, A 2B R, and A 3 R, which exert spatially distinct functions within the brain on presynaptic and postsynaptic sites (5, 6). Presynaptically, adenosine regulates the release of both dopamine and glutamate (7,8), whereas the output of dopaminergic and glutamatergic neurotransmission is regulated by heterodimerization of ARs with dopamine and glutamate receptors (9, 10). Through these mechanisms adenosine exerts upstream control over both dopaminergic and glutamatergic signaling. Consequently, any disruption in adenosine homeostasis is expected to affect those 2 transmitter systems, which play fundamental roles in the pathophysiology of schizophrenia. This regulatory function of adenosine might provide a missing link for the functional integration of the dopamine and glutamate hypotheses. Conventional antipsychotic