2022
DOI: 10.1038/s41598-022-26613-0
|View full text |Cite
|
Sign up to set email alerts
|

What makes the unsupervised monocular depth estimation (UMDE) model training better

Abstract: Current computer vision tasks based on deep learning require a huge amount of data with annotations for model training or testing, especially in some dense estimation tasks, such as optical flow segmentation and depth estimation. In practice, manual labeling for dense estimation tasks is very difficult or even impossible, and the scenes of the dataset are often restricted to a small range, which dramatically limits the development of the community. To overcome this deficiency, we propose a synthetic dataset ge… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?