Therapies targeting signaling molecules mutated in cancers can often have striking short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures 1,2 . Resistance can result from a secondary mutations 3,4 , but other times there is no clear genetic cause, raising the possibility of non-genetic rare cell variability [5][6][7][8][9][10][11] . Here, we show that melanoma cells can display profound transcriptional variability at the single cell level that predicts which cells will ultimately resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Author contributions: SMS, AR designed the study. SMS performed all experiments and analysis except: MD, ST assisted with fluctuation analysis and RNA-sequencing; EAT, BE performed NGFR and AXL sort experiments; CK, MB, KS performed PDX experiments; PB, MH provided cell lines; MX performed WM989-A6 characterization; EE developed iterative RNA FISH protocol; INA, KN performed DNA sequencing. MH provided guidance. SMS, AR wrote the paper.
Author information:AR receives consulting income and AR and SMS receive royalties related to Stellaris™ RNA FISH probes.