a b s t r a c tReplication techniques are widely applied in and for cloud to improve scalability and availability. In such context, the well-understood problem is how to guarantee consistency amongst different replicas and govern the trade-off between consistency and scalability requirements. Such requirements are often related to specific services and can vary considerably in the cloud. However, a major drawback of existing service-oriented replication approaches is that they only allow either restricted consistency or none at all. Consequently, service-oriented systems based on such replication techniques may violate consistency requirements or not scale well. In this paper, we present a Scalable Service Oriented Replication (SSOR) solution, a middleware that is capable of satisfying applications' consistency requirements when replicating cloud-based services. We introduce new formalism for describing services in service-oriented replication. We propose the notion of consistency regions and relevant service oriented requirements policies, by which trading between consistency and scalability requirements can be handled within regions. We solve the associated sub-problem of atomic broadcasting by introducing a Multi-fixed Sequencers Protocol (MSP), which is a requirements aware variation of the traditional fixed sequencer approach. We also present a Region-based Election Protocol (REP) that elastically balances the workload amongst sequencers. Finally, we experimentally evaluate our approach under different loads, to show that the proposed approach achieves better scalability with more flexible consistency constraints when compared with the state-of-the-art replication technique.