2018
DOI: 10.1080/1350178x.2018.1529215
|View full text |Cite
|
Sign up to set email alerts
|

What topic modeling could reveal about the evolution of economics

Abstract: The paper presents the topic modeling technique known as Latent Dirichlet Allocation (LDA), a form of text-mining aiming at discovering the hidden (latent) thematic structure in large archives of documents. By applying LDA to the full text of the economics articles stored in the JSTOR database, we show how to construct a map of the discipline over time, and illustrate the potentialities of the technique for the study of the shifting structure of economics in a time of (possible) fragmentation.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
35
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3

Relationship

2
6

Authors

Journals

citations
Cited by 67 publications
(37 citation statements)
references
References 32 publications
0
35
0
2
Order By: Relevance
“…This would require in-depth bibliometric, topic modelling, and science mapping analyses (cf. Aria and Cuccurullo, 2017; Körfgen et al , 2018; Ambrosino et al , 2019; LaFleur, 2019). These are left for future studies.…”
Section: Discussionmentioning
confidence: 99%
“…This would require in-depth bibliometric, topic modelling, and science mapping analyses (cf. Aria and Cuccurullo, 2017; Körfgen et al , 2018; Ambrosino et al , 2019; LaFleur, 2019). These are left for future studies.…”
Section: Discussionmentioning
confidence: 99%
“…1 A second approach, based on machine learning, takes the form of unsupervised algorithms which create a data partition without any a priori restriction on the number and type of categories to be generated. Clustering algorithms (Macqueen 1967), self-organising maps (Carlei and Nuccio 2014) and, more recently, topic modelling for text analysis of the economic literature (Ambrosino et al 2018) belong to this group. In unsupervised algorithms, the model validation is pursued by an expost educated interpretation of the result.…”
Section: Data Science: An Opportunity For the Creation Of New Variablesmentioning
confidence: 99%
“…We claim that research in economics can take advantage of the latter approaches. Even though someone has envisioned the end of economic theory and the transition towards a purely datadriven type of science (Anderson 2008;Prensky 2009), other authors suggest that the large availability of data, which reveals the complexity of the relationships in the observed reality, actually calls for more theory (Kitchin 2014;Ambrosino et al 2018;Nuccio and Guerzoni 2019;Carota, Durio, and Guerzoni 2014;Gould 1981). Data and its analysis can still act as a powerful hypothesis-mining engine (Jordan 1998;Carota, Durio, and Guerzoni 2014) and provide new theoretical ideas, which then need to be filtered through a theoretical framework.…”
Section: Data Science: An Opportunity For the Creation Of New Variablesmentioning
confidence: 99%
“…Кроме патентов, ММТ широко использовался для других типов текстовых данных. Многие исследования изучали научную литературу, опубликованную в разных реферируемых журналах [2,8,9], или все экономические статьи из базы данных вроде JSTOR [10]. Более того, некоторые исследования специально фокусировались на литературе, посвященной таким темам, как информационная безопасность [11] или биоинформатика [12].…”
Section: современные исследования по направлениюunclassified
“…Более того, некоторые исследования специально фокусировались на литературе, посвященной таким темам, как информационная безопасность [11] или биоинформатика [12]. Тогда как одни ученые смотрят только на аннотации статей [2], другие изучают полные тексты статей [10].…”
Section: современные исследования по направлениюunclassified