Recent years have seen the development of spintronic devices and their applications in biomedical areas. Spintronic devices rely on detecting or manipulating a magnetic field, a field to which biological matter is relatively transparent. The recent use of spintronic devices in biomedical areas has included diagnosing diseases such as cancer and cirrhosis, genotyping DNA, point-of-care devices, and flexible electronics. Up to date, most of the spintronic devices in biomedical applications fall into three mainstream types: anisotropic, giant, and tunneling magnetoresistance devices. Each of these has its advantages and drawbacks, which this review explores and discusses. The advent of spintronics gives us a new low-power, low-cost, ease-of-manufacture alternative to standard CMOS sensors. The sensitivity of spintronic biosensors has been progressing steadily, expected to increase tremendously in the next few years.