Differentially harvesting individual animals with specific traits has led some to argue that such selection can cause evolutionary change that may be detrimental to the species, especially if those traits are related positively to individual fitness. Most hunters are not selective in the type of animal they take, satisfied instead to harvest any legal animal. In a few exceptions, however, regulations may limit hunters to harvest animals of a minimum size or age regardless of their personal choice. Using information from a broad range of aquatic and terrestrial systems exposed to a myriad of potential and operational selective pressures, several authors have made expansive generalizations about selective harvest and its applicability to ungulates. Harvest-based selection can potentially be intensive enough to be relevant in an evolutionary sense, but phenotypic changes consistent with hunter selection are otherwise confounded with multiple environmental influences. Factors such as age, genetic contribution of females, nutrition, maternal effects, epigenetics, patterns of mating success, gene linkage, gene flow, refugia, date of birth, and other factors affecting selection interact with harvest to impede unidirectional evolution of a trait. The intensity of selection determines potential for evolutionary change in a meaningful temporal framework. Indeed, only under severe intensity, and strict selection on a trait, could human harvest prompt evolutionary changes in that trait. Broad generalizations across populations or ecological systems can yield erroneous extrapolations and inappropriate assumptions. Removal of males expressing a variety of horn or antler sizes, including some very large males, does not inevitably represent directional artificial selection unless the selective pressures are intensive enough to cause a unidirectional shift in allele frequencies that may act on some relevant life-history trait or process. Here I review the topic of harvest-based selection in male ungulates and discuss the inefficiency of trophy hunting in changing genetic expression of phenotype. Ó 2017 The Wildlife Society.