2016
DOI: 10.1175/bams-d-15-00219.1
|View full text |Cite
|
Sign up to set email alerts
|

When El Niño Rages: How Satellite Data Can Help Water-Stressed Islands

Abstract: There are more than 2,000 islands across Hawaii and the U.S.-Affiliated Pacific Islands (USAPI), where freshwater resources are heavily dependent upon rainfall. Many of the islands experience dramatic variations in precipitation during the different phases of the El Niño–Southern Oscillation (ENSO). Traditionally, forecasters in the region relied on ENSO climatologies based on spatially limited in situ data to inform their seasonal precipitation outlooks. To address this gap, a unique NOAA/NASA collaborative p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2016
2016
2021
2021

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 10 publications
0
4
0
1
Order By: Relevance
“…By detecting the properties of precipitating clouds, satellites estimate snapshots of the precipitation rate from infrared (IR) sensors, relatively direct passive microwave (PMW) sensors, or Precipitation Radar (PR) (Kummerow et al., 2015; Sun et al., 2018; Yang et al., 2013). By further combining these multiple satellite sources, quasi‐global gridded products have been developed (e.g., Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), Climate Prediction Center (CPC) Morphing (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Integrated MultisatellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG)), which have been used in a wide range of applications (Brunetti et al., 2018; Luchetti et al., 2016; McCabe et al., 2017; Schlosser & Houser, 2007; Y. P. Zhou et al., 2019).…”
Section: Introductionmentioning
confidence: 99%
“…By detecting the properties of precipitating clouds, satellites estimate snapshots of the precipitation rate from infrared (IR) sensors, relatively direct passive microwave (PMW) sensors, or Precipitation Radar (PR) (Kummerow et al., 2015; Sun et al., 2018; Yang et al., 2013). By further combining these multiple satellite sources, quasi‐global gridded products have been developed (e.g., Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), Climate Prediction Center (CPC) Morphing (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Integrated MultisatellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG)), which have been used in a wide range of applications (Brunetti et al., 2018; Luchetti et al., 2016; McCabe et al., 2017; Schlosser & Houser, 2007; Y. P. Zhou et al., 2019).…”
Section: Introductionmentioning
confidence: 99%
“…Furthermore, to achieve any semblance of understanding of global historical precipitation trends, spatial aggregation of precipitation is necessary (Fischer et al 2013). In fact, the conversation of global hydrometeorological response to climate change often has taken shape around political concerns or national security foci such as food (Rosenzweig and Parry 1994), water resources, or hazard mitigation (e.g., flood and drought), and are typically spatially confined by | have shown the usefulness of PERSIANN-CDR for climate studies (Miao et al 2015;Luchetti et al 2016;Ashouri et al 2016).…”
mentioning
confidence: 99%
“…Penentuan tahun kejadian iklim ekstrem dalam penelitian ini berdasarkan pada nilai Oceanic Niño Index (ONI) yang merupakan standar indeks yang digunakan oleh NOAA untuk mengidentifikasi kejadian El Niño dan La Nina (Jong et al, 2016;Luchetti et al, 2016;Nabilah et al, 2017). Penelitian lainnya dalam menentukan tahun El Niño dan La Nina menggunakan nilai tekanan udara di Tahiti dan Darwin (SOI) (Santoso, 2016;Taufik et al, 2017;Varotsos et al, 2016).…”
Section: Tahun Iklim Ekstremunclassified