A significant number of first-generation offshore wind turbines (OWTs) have either reached or are approaching the end of their operational lifespan and need to be upgraded or replaced with more modern units. In response to this concern, governments, regulatory bodies and industries have initiated the development of effective end-of-life (EOL) management strategies for offshore wind infrastructure. Lifetime extension is a relatively new concept that has recently gained significant attention within the offshore wind energy community. Extending the service lifetime of OWTs can yield many benefits, such as reduced capital cost, increased return on investment (ROI), improved overall energy output, and reduced toxic gas emissions. Nevertheless, it is important to identify and prepare for the challenges that may limit the full exploitation of the potential for OWT lifetime extension projects. The objective of this paper is to present a detailed PESTLE analysis to evaluate the various political, economic, sociological, technological, legal, and environmental challenges that must be overcome to successfully implement lifetime extension projects in the offshore wind energy sector. We propose a decision framework for extending the lifetime of OWTs, involving the degradation mechanisms and failure modes of components, remaining useful life estimation processes, safety and structural integrity assessments, economic and environmental evaluations, and the selection of lifetime extension technologies among remanufacturing, retrofitting, and reconditioning. Finally, we outline some of the opportunities that lifetime extension can offer for the wind energy industry to foster a more circular and sustainable economy in the future.