2009
DOI: 10.1007/s11083-009-9136-6
|View full text |Cite
|
Sign up to set email alerts
|

When Will Every Maximal F-free Subposet Contain a Maximal Element?

Abstract: Let F be a partially ordered set (poset). A poset P is called F-free if P contains no subposet isomorphic to F. A finite poset F is said to have the maximal element property if every maximal F-free subposet of any finite poset P contains a maximal element of P. It is shown that a poset F with at least two elements has the maximal element property if and only if F is an antichain or F ∼ = 2 + 2.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?