We consider flavor constraints on, and collider signatures of, asymmetric dark matter (ADM) via higher dimension operators. In the supersymmetric models we consider, R-parity-violating (RPV) operators carrying B − L interact with n dark matter particles X through an interaction of the formThis interaction ensures that the lightest ordinary supersymmetric particle is unstable to decay into the X sector, leading to a higher multiplicity of final state particles and reduced missing energy at a collider. Flavor-violating processes place constraints on the scale of the higher dimension operator, impacting whether the LOSP decays promptly. While the strongest limitations on RPV from n −n oscillations and proton decay do not apply to ADM, we analyze the constraints from meson mixing, μ − e conversion, μ → 3e and b → sl þ l − . We show that these flavor constraints, even in the absence of flavor symmetries, allow parameter space for prompt decay to the X sector, with additional jets and leptons in exotic flavor combinations. We study the constraints from existing 8 TeV LHC Supersymmetry (SUSY) searches with (i) 2-6 jets plus missing energy and (ii) 1-2 leptons, 3-6 jets plus missing energy, comparing the constraints on ADM-extended supersymmetry with the usual supersymmetric simplified models.