We describe de Branges-Rovnyak spaces H(bα), α > 0, where the function bα is not extreme in the unit ball of H ∞ on the unit disk D, defined by the equality bα(z)/aα(z) = (1 − z) −α , z ∈ D, where aα is the outer function such that aα(0) > 0 and |aα| 2 + |bα| 2 = 1 a.e. on ∂D.