A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3′ poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) of the Tanzanian strain TZ/CA127/19 are organized as typical of gammaCoVs (Coronaviridae family): 5′UTR-[ORFs 1a/1b encoding replicase complex (Rep1ab) non-structural peptides nsp2-16]-[spike (S) protein]-[ORFs 3a/3b]-[small envelop (E) protein]-[membrane (M) protein]-[ORFs 4a/4c]-[ORFs 5a/5b]-[nucleocapsid (N) protein]-[ORF6b]-3′UTR. The structural (S, E, M and N) and Rep1ab proteins of TZ/CA127/19 contain features typically conserved in AvCoVs, including the cleavage sites and functional motifs in Rep1ab and S. Its genome backbone (non-spike region) is closest to Asian GI-7 and GI-19 infectious bronchitis viruses (IBVs) with 87.2–89.7% nucleotide (nt) identities, but it has a S gene closest (98.9% nt identity) to the recombinant strain ck/CN/ahysx-1/16. Its 3a, 3b E and 4c sequences are closest to the duck CoV strain DK/GD/27/14 at 99.43%, 100%, 99.65% and 99.38% nt identities, respectively. Whereas its S gene phylogenetically cluster with North American TCoVs and French guineafowl COVs, all other viral genes group monophyletically with Eurasian GI-7/GI-19 IBVs and Chinese recombinant AvCoVs. Detection of a 4445 nt-long recombinant fragment with breakpoints at positions 19,961 and 24,405 (C- and N-terminus of nsp16 and E, respectively) strongly suggested that TZ/CA127/19 acquired its genome backbone from an LX4-type (GI-19) field strain via recombination with an unknown AvCoV. This is the first report of AvCoV in Tanzania and leaves unanswered the questions of its emergence and the biological significance.