Industrial buildings have numerous kinds of energy-losing equipment, such as engines, ovens, boilers and heat exchangers. Energy losses are related to inefficient energy use and lousy work conditions for the people inside the buildings. This work is devoted to the recovery of lost energy from industrial buildings. Firstly, the residual energy of the building is extracted to be used to warm water. Consequently, the work conditions of the people inside industrial buildings can be improved by maintaining the adequate temperature. The recovery of the energy is performed by a multipurpose heat pump system (HP system). The working fluid used in the HP system is R134a, which is a traditional and cheap working fluid. The thermophysical properties of R134a are obtained through the PC-SAFT equation of state. This work presents a performance mapping based on the intercepted areas framework to evaluate which working conditions are the optimal operating variables. The latter depends on several key parameters, such as compressor work, heat delivery, heat absorbed and exergetic efficiency. The results show that the optimal work conditions are found at different condenser and evaporator temperatures, and these may be limited by what the designer considers a sound performance of the heat pump system.