Auditory processing disorder (APD) is a listening impairment that some school-aged children may experience as difficulty understanding speech in background noise despite having normal peripheral hearing. Recent resting-state functional magnetic resonance imaging (MRI) has revealed an alteration in regional, but not global, functional brain topology in children with APD. However, little is known about the brain structural organization in APD. We used diffusion MRI data to investigate the structural white matter connectome of 58 children from 8 to 14 years old diagnosed with APD (n=29) and children without hearing complaints (healthy controls, HC; n=29). We investigated the rich-club organization and structural connection differences between APD and HC groups using the network science approach. The APD group showed neither edge-based connectivity differences nor any differences in rich-club organization and connectivity strength (i.e., rich, feeder, local connections) compared to HCs. However, at the regional network level, we observed increased average path length (APL) and betweenness centrality in the right inferior parietal lobule and inferior precentral gyrus, respectively, in children with APD. HCs demonstrated a positive association between APL in the left orbital gyrus and the listening-in-spatialized-noise-sentences task, a measure of auditory processing ability. This correlation was not observed in the APD group. In line with previous functional connectome findings, the current results provide evidence for altered structural networks at a regional level in children with APD, and an association with listening performance, suggesting the involvement of multimodal deficits and a role for structure-function alteration in listening difficulties of children with APD.