2017
DOI: 10.1007/s10645-017-9298-3
|View full text |Cite
|
Sign up to set email alerts
|

Who Bears the Burden of Social Security Contributions in Germany? Evidence from 35 Years of Administrative Data

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 9 publications
0
4
0
Order By: Relevance
“…The final strand of the related literature includes studies focusing on the discussion of who ultimately bears the costs of insurance contributions: employers or employees. These studies yield a wide variety of conclusions on the incidence of insurance premium burdens and who bears them, because the countries, objects, and data sources differ for researchers in different countries (Hamermesh, ; Holmlund, ; Gruber, ; Anderson and Meyer, ; Komamura and Yamada, ; Sakai, ; Sakai and Kazekami, ; Hamaaki and Iwamoto, ; Tachibanaki and Yokoyama, ; Iwamoto and Hamaaki, ; Kugler and Kugler, ; Hamaaki, ; Müller and Neumann, ). The results are mixed, as pointed out in the meta‐analysis by Melguizo and González‐Páramo ().…”
Section: Introductionmentioning
confidence: 99%
“…The final strand of the related literature includes studies focusing on the discussion of who ultimately bears the costs of insurance contributions: employers or employees. These studies yield a wide variety of conclusions on the incidence of insurance premium burdens and who bears them, because the countries, objects, and data sources differ for researchers in different countries (Hamermesh, ; Holmlund, ; Gruber, ; Anderson and Meyer, ; Komamura and Yamada, ; Sakai, ; Sakai and Kazekami, ; Hamaaki and Iwamoto, ; Tachibanaki and Yokoyama, ; Iwamoto and Hamaaki, ; Kugler and Kugler, ; Hamaaki, ; Müller and Neumann, ). The results are mixed, as pointed out in the meta‐analysis by Melguizo and González‐Páramo ().…”
Section: Introductionmentioning
confidence: 99%
“…Among them, data preprocessing is zero level data fusion, target state estimation, position estimation, and threat estimation are first level, second level, and third level fusion, respectively, and information feedback and correction are finally fourth level fusion. Figure 1 is the schematic diagram of the data fusion model in this paper [15].…”
Section: Data Fusion Model and Basic Algorithmmentioning
confidence: 99%
“…Our study contributes to the literature by providing novel evidence of labor market impacts of payroll taxation in the contrasting context of highly competitive and flexible labor market. 1 The majority of studies on labor market impacts of changes in payroll tax rates focused on European countries such as Sweden (Bohm and Lind, 1993;Bennmarker, Mellander, and Ockert, 2009;Egebark andKaunitz, 2013 and2017;Bennmarker et al, 2013;Skedinger, 2017;Saez et al, 2019), France (Kramarz and Philippon, 2001;Bozio, Breda, and Grenet, 2019;Cahuc, Carcillo and Le Barbanchon, 2019), Norway (Johansen and Klette, 1997;Gavrilova et al, 2015), Finland (Korkeamäki and Uusitalo, 2009;Huttunenet al, 2013), Spain (Elias, 2015), Greece (Saez, Matsaganis, Tsakloglou, 2012), and Germany (Müller and Neumann, 2017). Some studies have investigated the labor market impacts of payroll taxations in Argentina (Cruces et al, 2010), Chile (Gruber, 1997), Columbia (Adriana and Kugler, 2009), and the United States (Anderson and Meyer, 2000).…”
Section: Introductionmentioning
confidence: 99%