Engineering of native and recombinant enzyme reactions in whole-cell biocatalysis may allow the production of a variety of chemicals. In particular, fine-tuning of the reaction selectivity may enable the preparation of a desired product to a high conversion. Here, we demonstrated that various C9 chemicals such as 9-aminononanoic acid, 1,9-nonanediol, 9-amino-1-nonanol, and 1,9-diaminononane could be produced from renewable C18 oleic acid. As a representative example, activation of six recombinant enzyme reactions (e.g., fatty acid double bond hydratase, long-chain secondary alcohol dehydrogenase, Baeyer−Villiger monooxygenase, lipase, primary alcohol dehydrogenase, and ω-aminotransferases) with repression of one native enzyme reaction (i.e., aldehyde dehydrogenase) in Escherichia coli-based biocatalysis led to the formation of 9-aminononanoic acid with an isolation yield of 54% from oleic acid via 10-hydroxyoctadecanoic acid, 10-ketooctadecanoic acid, 9-(nonanoyloxy)nonanoic acid, 9-hydroxynonanoic acid, and 9-oxo-nonanoic acid. This study will contribute to biosynthesis of not only ω-aminoalkanoic acids but also ω-amino-1-alkanols and α,ω-diaminoalkanes from renewable fatty acids (e.g., oleic acid and ricinoleic acid).