Cerebellar ataxias (CAs) comprise a group of rare, neurological disorders characterized by extensive phenotypic and genetic heterogeneity. The core clinical feature is the cerebellar syndrome, which is often accompanied by other neurological or non-neurological signs. In the last 30 years, our understanding of the CA etiology has increased significantly, and numerous ataxia-associated genes have been discovered. Conventional variants or tandem repeat expansions, localized in the coding or non-coding DNA sequences, lead to hereditary ataxia, which can display different patterns of inheritance. Advances in molecular techniques have enabled a rapid and cost-effective detection of causative variants in a significant number of CA patients. However, despite performing extensive investigations, a definite diagnosis is still unknown in the majority of affected individuals. In this review, we discuss the major advances in the genetics of CAs over the last 30 years, focusing on the impact of next-generation sequencing on the genetic landscape of childhood- and adult-onset CAs. Additionally, we outline possible directions for further genetic research in hereditary and sporadic CAs in the era of increasing application of whole-genome sequencing and genome-wide association studies in various neurological disorders.