Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1. Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.Sleeping Beauty | breast cancer | TRPS1 | metastasis | tumor suppressors B reast cancer is the second leading cause of cancer-related deaths in the United States. The Cancer Genome Atlas (TCGA) network has classified breast cancer into four main subtypes: luminal A, luminal B, HER2+, and basal-like (1-5). Basal-like or triplenegative breast cancer (TNBC) constitutes 10-20% of all breast cancers and has a higher rate of distal recurrence and a poorer prognosis than other breast cancer subtypes. Less than 30% of women with metastatic TNBC survive 5 y and almost all die from their disease despite adjuvant chemotherapy (1, 3-5). Mutations, rearrangements, or deletions in highly penetrant genes such as BRCA1, BRCA2, TP53, CDH1, STK11, and PTEN are important drivers of TNBC (6-8). PTEN is a dual-specificity phosphatase that antagonizes the PI3K/AKT pathway through its lipid phosphatase activity and negatively regulates the MAPK pathway through its protein phosphatase activity (9, 10). Mutations in PTEN drive epithelial-mesenchymal transition (EMT) and promote metastasis in TNBC (11-13). Similarly, in mice, heterozygous deletion of Pten induces mammary tumors with basal-like characteristics (14)(15)(16)(17).Despite all of the cancer genome-sequencing efforts, there is still an incomplete understanding of the genes and genetic networks driving TNBC. New technologies that would provide a more complete understanding of the genetics of TNBC are still needed to deconvolute the complexity of this deadly cancer. Our laboratory and others have pioneered the use of transposon mutagenesis in mice as a tool for cancer gene discovery (18-26). Transposons induce cancer by randomly inserting into the mouse genome, mutating, and disrupting potential cancer genes. Transposon insertions in tumors thus serve as molecular tags for the high-throughput cloning and identification of cancer genes. In addition, because transposon insertions are PCR-amplified before they are sequenced, insertional mutations in cancer genes that are present in only a small fraction of tumor cells can be identified. Transposon mutagenesis can thus identify genes that are functioning at th...