2022
DOI: 10.3389/fgene.2022.806429
|View full text |Cite
|
Sign up to set email alerts
|

Whole-Exome Sequencing Implicates Neuronal Calcium Channel with Familial Atrial Fibrillation

Abstract: Background: Atrial Fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, responsible for considerable morbidity and mortality. The heterogenic and complex pathogenesis of AF remains poorly understood, which contributes to the current limitation in effective treatments. We aimed to identify rare genetic variants associated with AF in patients with familial AF.Methods and results: We performed whole exome sequencing in a large family with familial AF and identified a rare variant in the gene CACN… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…However, aggregating investigations have convincingly substantiated that genetic determinants exert critical roles in the initiation and perpetuation of AF, especially for idiopathic/familial AF, and, to date, a great number of rare AF-causing variations in >60 genes have been causally related to AF, amidst which the overwhelming majority encode ion channel subunits, myocardial structural proteins, signaling molecules, cardiac transcription factors, and connexins [ 52 , 53 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ]. In addition, pan-genomic association research has revealed that common variants at ~140 genetic loci are implicated with enhanced vulnerability to AF, though merely a small fraction of these recognized variants have been experimentally validated to be pathogenic for AF thus far [ 52 ].…”
Section: Introductionmentioning
confidence: 99%
“…However, aggregating investigations have convincingly substantiated that genetic determinants exert critical roles in the initiation and perpetuation of AF, especially for idiopathic/familial AF, and, to date, a great number of rare AF-causing variations in >60 genes have been causally related to AF, amidst which the overwhelming majority encode ion channel subunits, myocardial structural proteins, signaling molecules, cardiac transcription factors, and connexins [ 52 , 53 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ]. In addition, pan-genomic association research has revealed that common variants at ~140 genetic loci are implicated with enhanced vulnerability to AF, though merely a small fraction of these recognized variants have been experimentally validated to be pathogenic for AF thus far [ 52 ].…”
Section: Introductionmentioning
confidence: 99%