Background: Twelve students experienced symptoms of acute respiratory infection (ARI) at a training base in Beijing from August 26 to August 30, 2015. We investigated the cause of this ARI outbreak. Methods: In partnership with the local center for disease control, we collected a total of twelve pharyngeal swab specimens as well as demographic information for the affected patients. We used multiplex real-time PCR to screen for sixteen common respiratory viruses in these samples. To isolate HAdV, we inoculated Hep-2 cells with the human adenovirus (HAdV)-positive samples and then carried out sequencing and phylogenetic analysis of the hexon, fiber, and penton genes of the isolated adenoviruses. In addition, we analyzed the entire genome of one strain isolated from the index case to identify single-nucleotide substitutions. Results: We identified ten HAdV-positive students using multiplex real-time PCR. None of the students were coinfected with other viruses. We successfully isolated seven HAdV strains from the pharyngeal swab specimens. The coding sequences of the hexon, fiber, and penton genes of these seven HAdV strains were identical, suggesting that they represented seven strains from a single virus clone. One HAdV isolate obtained from the index case, BJDX-01-2015, was selected for whole genome analysis. From this isolate, we obtained a 34,774-nucleotide sequence. The genome of BJDX-01-2015 clustered with HAdV-B55 in phylogenetic analyses and had 99.97% identity with human adenovirus 55 isolate HAdV-B/CHN/BJ01/2011/55 (GenBank accession no. JX491639). Conclusions: We identified HAdV-B55 as the strain associated with the August 2015 ARI outbreak at a training base in Beijing. This was the first reported outbreak in Beijing due to HAdV-B55. Continuous surveillance of respiratory adenoviruses is urgently needed to understand the epidemiological and evolutionary features of HAdV-B55, and an epidemiological modeling approach may provide further insights into this emerging public health threat. Furthermore, the clinical laboratory data from this outbreak provides important reference for the clinical diagnosis and may ultimately aid in informing the development of strategies to control and prevent respiratory tract infections caused by HAdV-B55.