This study evaluates the critical roles of the dispersion medium and temperature during the solvothermal synthesis of nitrogen-doped reduced graphene oxide (NG) for enhancing its performance as an active material in supercapacitor electrodes. Using a fixed volume of a solvent (THF, ethanol, acetonitrile, water, N,N-Dimethylformamide, ethylene glycol, or N-Methyl-2-pyrrolidone) as the dispersive medium, a series of samples at different temperatures (60, 75, 95, 120, 150, 180, and 195 °C) are synthesized and investigated. A proper removal of the oxygen moieties from their surface and an optimum number of N-based defects are essential for a better reduction of graphene oxide and better stacking of the NG sheets. The origin of the supercapacitance of NG sheets can be correlated to the inherent properties such as the boiling point, viscosity, dipole moment, and dielectric constant of all the studied solvents, along with the synthesis temperature. Due to the achievement of a suitable synthesis environment, NG synthesized using N,N-Dimethylformamide at 150 °C displays an excellent supercapacitance value of 514 F/g at 0.5 A/g, which is the highest among all our samples and also competitive among several state-of-the-art lightweight carbon materials. Our work not only helps in understanding the origin of the supercapacitance exhibited by graphene-based materials but also tuning them through a suitable choice of synthesis conditions.