This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.