Large language models (LLM) are finding new areas of application in practice, including the sphere of public and municipal administration. To increase the efficiency of the practical application of large language models rules and methods of interaction with them are developed, taking into account the specifics, a wide range of their possible use and increasing accessibility. The article examines the issues of improving the efficiency of large language models with various types of content using prompt engineering techniques. An analysis of a significant number of prompts for large language models and methods for their formation is presented. The article discusses the possibilities of using large language models, trained (customizable) using creative prompting for intelligent abstracting of various content with the subsequent generation of original texts and text documents for the sphere of state and municipal administration. The proposed methodology makes it possible to effectively integrate knowledge from various sources into LLM training and turn it into a truly intelligent tool that expands the possibilities of its work. When applying this approach, the LLM acts as a powerful intelligent assistant that allows you to generate a document authored by the user of the system. The use of large language models opens up wide opportunities for employees in the field of state and municipal administration to automate the process of creating thematic texts, text reports, qualification papers, reviews and analytical notes. It also allows users to see possible new meanings, previously unnoticed associations, and even generate new ideas in the field of management in the process of analyzing the texts received during the abstract. The authors have shown that in order to improve the quality of intellectual abstracting, it is necessary to carry out the iterative use of different methods of teaching (tuning) LLM. At the same time, the initial selection of texts for training, which is made by the user based on his/her own knowledge of the subject area, is important.