In October of 2005, I scribbled in a notebook, "can it possibly be that simple?" I was referring to the sensitivity of transient dynamics (the eventual results appear in Chap. 7), and had just begun to use matrix calculus as a tool. The answer to my question was yes. It can be that simple. This book relies on this set of mathematical techniques. This chapter introduces the basics, which will be used throughout the text. For more information, I recommend four sources in particular. The most complete treatment, but not the easiest starting point, is the book by Magnus and Neudecker (1988). More accessible introductions can be found in the paper by Magnus and Neudecker (1985) and especially the text by Abadir and Magnus (2005). A review paper by Nel (1980) is helpful in placing the Magnus-Neudecker formulation in the context of other attempts at a calculus of matrices. Sensitivity analysis asks how much change in an outcome variable y is caused by a change in some parameter x. At its most basic level, and with some reasonable assumptions about the continuity and differentiability of the functional relationships involved, the solution is given by differential calculus. If y is a function of x, then the derivative dy dx tells how y responds to a change in x, i.e., the sensitivity of y to a change in x. However, the outcomes of a demographic calculation may be scalar-valued (e.g., the population growth rate λ), vector-valued (e.g., the stable stage distribution), or matrix-valued (e.g., the fundamental matrix). Any of these outcomes may be