Having an optimal quality of vision as well as adequate cognitive capacities is known to be essential for driving safety. However, the interaction between vision and cognitive mechanisms while driving remains unclear. We hypothesized that, in a context of high cognitive load, reduced visual acuity would have a negative impact on driving behavior, even when the acuity corresponds to the legal threshold for obtaining a driving license in Canada, and that the impact observed on driving performance would be greater with the increase in the threshold of degradation of visual acuity. In order to investigate this relationship, we examined driving behavior in a driving simulator under optimal and reduced vision conditions through two scenarios involving different levels of cognitive demand. These were: 1. a simple rural driving scenario with some pre-programmed events and 2. a highway driving scenario accompanied by a concurrent task involving the use of a navigation device. Two groups of visual quality degradation (lower/ higher) were evaluated according to their driving behavior. The results support the hypothesis: A dual task effect was indeed observed provoking less stable driving behavior, but in addition to this, by statistically controlling the impact of cognitive load, the effect of visual load emerged in this dual task context. These results support the idea that visual quality degradation impacts driving behavior when combined with a high mental workload driving environment while specifying that this impact is not present in the context of low cognitive load driving condition.