Cocoa can be a rich source of antioxidants including the flavan-3-ols, epicatechin and catechin, and their oligomers (procyanidins). While these flavonoids have been reported to reduce the rate of free radical-induced erythrocyte hemolysis in experimental animal models, little is known about their effect on human erythrocyte hemolysis. The major objective of this work was to study the effect of a flavonoid-rich cocoa beverage on the resistance of human erythrocytes to oxidative stress. A second objective was to assess the effects of select purified cocoa flavonoids, epicatechin, catechin, the procyanidin Dimer B2 and one of its major metabolites, 3 0 -O-methyl epicatechin, on free radical-induced erythrocyte hemolysis in vitro. Peripheral blood was obtained from 8 healthy subjects before and 1, 2, 4 and 8 h after consuming a flavonoid-rich cocoa beverage that provided 0.25 g/kg body weight (BW), 0.375 or 0.50 g/kg BW of cocoa. Plasma flavanol and dimer concentrations were determined for each subject. Erythrocyte hemolysis was evaluated using a controlled peroxidation reaction. Epicatechin, catechin, 3 0 -O-methyl epicatechin and (-)-epicatechin-(4b . 8)-epicatechin (Dimer B2) were detected in the plasma within 1 h after the consumption of the beverage. The susceptibility of erythrocytes to hemolysis was reduced significantly following the consumption of the beverages. The duration of the lag time, which reflects the capacity of cells to buffer free radicals, was increased. Consistent with the above, the purified flavonoids, epicatechin, catechin, Dimer B2 and the metabolite 3 0 -O-methyl epicatechin, exhibited dose-dependent protection against AAPH-induced erythrocyte hemolysis at concentrations ranging from 2.5 to 20 mM. Erythrocytes from subjects consuming flavonoid-rich cocoa show reduced susceptibility to free radical-induced hemolysis ðp , 0:05Þ.