1995
DOI: 10.1016/0304-8853(95)00248-0
|View full text |Cite
|
Sign up to set email alerts
|

Why is the giant magnetoresistance proportional to the magnetisation for granular CuCo?

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

1997
1997
2005
2005

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 5 publications
0
1
0
2
Order By: Relevance
“…The GMR is therefore often presumed to be a mathematical function of the overall magnetization M. In the case of purely superparamagnetic ͑SPM͒ behavior, it is supposed to be proportional to M squared. 2,3,6,7 If the behavior is not solely SPM, but the larger particles are ''blocked,'' the model by Wiser 5 and Musa et al 8 provides a functional relationship between the GMR and M that includes terms both linear and quadratic in M. Actually, it is based on the presence of a particle-size distribution with, at any given temperature, the smaller particles being SPM and the larger being blocked. The relative fractions of SPM and blocked particles are temperature dependent.…”
Section: Introductionmentioning
confidence: 99%
“…The GMR is therefore often presumed to be a mathematical function of the overall magnetization M. In the case of purely superparamagnetic ͑SPM͒ behavior, it is supposed to be proportional to M squared. 2,3,6,7 If the behavior is not solely SPM, but the larger particles are ''blocked,'' the model by Wiser 5 and Musa et al 8 provides a functional relationship between the GMR and M that includes terms both linear and quadratic in M. Actually, it is based on the presence of a particle-size distribution with, at any given temperature, the smaller particles being SPM and the larger being blocked. The relative fractions of SPM and blocked particles are temperature dependent.…”
Section: Introductionmentioning
confidence: 99%
“…O aspecto da curva obtida mostrado na Figura 64 é típico de curvas de magnetoresistência gigante (GMR) de sólidos granulares, onde a magnetoresistência tem valor negativo e é igual nas três geometrias de medida: p;;, magnetoresistência longitudinal; py, magnetoresistência transversal; e P.L. magnetoresistência perpendicular [2, [74][75][76][77][78][79].…”
Section: Magneto-transporteunclassified
“…Sabe-se que a magnetoresistência gigante depende da estrutura de fases, da conectividade das partículas ferromagnéticas, do tamanho dos domínios magnéticos, do tamanho de partícula da fase não magnética e do alinhamento magnético dos spins eletrônicos, o que a torna diretamente proporcional à magnetização de saturação efetiva da amostra [74][75][76][77][78][79]. Logo, as anomalias encontradas são fortes indícios de que a magnetoresistência na amostra pode estar sendo produzida por dois processos distintos: um devido às partículas com características de multidomínio e outro devido a partículas com características de monodomínio.…”
Section: Magneto-transporteunclassified