Around 44 million people in the world are suffering from dementia including Alzheimer's disease (AD). It is considered as one of the biggest global public health challenges our generation cope with. At the dawn of 2015, AD medical care remains unsuccessful despite the identification of its neuropathological hallmarks one century ago. Being attentive to emerging prospects is essential because the current advances lead to substantive improvement of the medical care. We are pleased to present an issue specifically devoted to AD and to the related therapeutic strategies. The Topic Research in this issue is based on a series of original papers and reviews. The latters focus on the advances in basic and clinical research trends in AD, they provide an up-to-date information and future perspectives on this hot topic as well.AD is a progressive disease, it occurs over a long period before the onset of symptoms which are impaired memory, apathy, and depression. The characteristics of AD consist in neurofibrillary tangles (intraneuronal aggregates of hyperphosphorylated tau proteins) and senile plaques [dense extraneuronal deposits composed of amyloid β (Aβ)]. The other features linked to these two core pathological hallmarks of AD are inflammation, oxidative stress, progressive synaptic, and neuronal loss. Nowadays, many AD molecular patterns have been screened to identify a potential therapeutic strategy. Although a myriad of evidence shows that the hippocampal volume decrease belongs to the AD earliest signs, as it is pointed out by the authors of the review paper presented in this issue, this element clearly could not be used as a diagnostic criterion (Maruszak and Thuret, 2014).With the flood of evidence for tau pathology as key event of the disease development, the understanding of diverse tau functions and its molecular behavior is one of the major steps in the progression of our knowledge about the neurodegenerescence detected in AD. The precision of tau role in DNA protection and RNA integrity under physiological conditions or under ROSproducing stress (Violet et al., 2014) provides clarification for a mechanistic model in which tau disturbance initiates an explanation for DNA damages observed in AD. Principally, tau is a phosphoprotein. So, a complex equilibrium between tau kinases and phosphatases activities is one of the main potential therapeutic runways. Abnormal or excessive tau phosphorylation by either kinases such as GSK3β, CDK5, DYRK1A for example or other known and unknown kinases are related to AD pathogenesis. However, the identity and the strict number of tau kinases involved in AD process remain uncertain. In this way, focus at specific tau phosphorylation site(s) by a kinase multitargeting approach as potential AD therapeutic strategy has been proposed to effectively hamper the multifactorial disease progression (Hilgeroth and Tell, 2013). Since diabetes, linked itself to dysregulation of GSK3β activity, is associated in latelife with an increased risk of dementia, epidemiological and experimental ...