This paper presents evidence of the disruption of a transition from fossil fuels to nuclear power, and finds the benefits forgone as a consequence are substantial. Learning rates are presented for nuclear power in seven countries, comprising 58% of all power reactors ever built globally. Learning rates and deployment rates changed in the late-1960s and 1970s from rapidly falling costs and accelerating deployment to rapidly rising costs and stalled deployment. Historical nuclear global capacity, electricity generation and overnight construction costs are compared with the counterfactual that pre-disruption learning and deployment rates had continued to 2015. Had the early rates continued, nuclear power could now be around 10% of its current cost. The additional nuclear power could have substituted for 69,000-186,000 TWh of coal and gas generation, thereby avoiding up to 9.5 million deaths and 174 Gt CO 2 emissions. In 2015 alone, nuclear power could have replaced up to 100% of coal-generated and 76% of gas-generated electricity, thereby avoiding up to 540,000 deaths and 11 Gt CO 2 . Rapid progress was achieved in the past and could be again, with appropriate policies. Research is needed to identify impediments to progress, and policy is needed to remove them. , and thereby more quickly raises living standards and human wellbeing. As the cost of electricity decreases, deployment rate increases. Transition takes place faster and the benefits are delivered sooner.History is replete with examples of one technology replacing another [2,3]. Large infrastructure transitions have commonly taken around a century [10]. Examples are transitions to canals, railways, highways, oil and gas pipelines, telegraph, and electricity grids. Transitions typically follow an S-curve from 0 to 100% complete, with three phases: accelerating to about 20%, near-linear to about 80%, and decelerating to 100% [3,10]. Electricity grids reached 50% of world population in 1960 and 80% in 2010 [11].The transition to nuclear power began in 1954 with the first reactor connected to the grid. Until the 1970s, it was envisaged that nuclear would emulate earlier energy transitions. For example, Wilson [12] projected that nuclear power would supply 14 to 21% of world primary energy by 2000. However, the transition to nuclear reached 4% by 1970, then stalled [3]. The deployment rate of nuclear capacity is currently less than in 1972; the transition has been stalled for 44 years.The rate that technology transitions take place depends, in part, on the technologies being 'fit-for-purpose' and on the learning rates that occur during the transition period. To accelerate the transition to reliable, cheap, clean, safe and comparatively environmentally benign electricity generation, policies need to focus on ways to improve the learning rates and deployment rates of technologies that meet requirements. Historical learning rates provide insight into what rates may be achievable and what could be done to return to rapid rates.The concept of learning rates, or cost e...