Human bodies vary widely: height, weight, blood volume, handedness, strength, and variations from disabilities, trauma, genetics, etc. Engineers must be trained to include human variance when designing human-interactive systems. Typically, this is not incorporated into mathematical and modeling focused courses. In the spring of 2019, one of three sections of an introduction to biomechanics course was modified to adopt interactive group problem solving and add human body parameter variation to the problems that students solved. Problems were solved for multiple body sizes. Initial evidence suggests this was successful in increasing students’ consideration of human variation and user needs in mathematical modeling and in increasing their mention of specific body parameters and parameter variation. This can be implemented by a wide variety of instructors without special training in pedagogy or in universal design, especially when a course already features interactive small group problem solving, even during a large lecture by having students’ pair to solve equations briefly. Future steps might consider other parameters of diversity, inclusion, or equity topics. We were pleased to see that small changes in pedagogical approach can pay significant dividends encouraging students to situate analytic work in realistic engineering contexts.