Hand gestures represent a natural way to express concepts and emotions which are peculiar to each culture. Several studies exploit biometric traits, such as fingerprint, iris or face for subject identification purposes. Within this paper, a novel ultrasound system for person identification that exploits hand gestures is presented. The system works as a sonar, measuring the ultrasonic pressure waves scattered by the subject’s hand, and analysing its Doppler information. Further, several transformations for obtaining time/frequency representations of the acquired signal are computed and a deep learning detector is implemented. The proposed system is cheap, reliable, contactless and can be easily integrated with other personal identification approaches allowing different security levels. The performances are evaluated via experimental tests carried out on a group of 25 volunteers. Results are encouraging, showing the promising potential of the system.