Recent advancements in photonic integrated circuits (PICs) have paved the way for a new era of frequency-agile coherent radar systems. Unlike traditional all-electronic RF radar techniques, fully photonic systems offer superior performance, overcoming bandwidth limitations and noise degradation when operating across S (2–4 GHz), X (8–12 GHz), and K-band (12–40 GHz) frequencies. They also exhibit excellent phase noise performance, even at frequencies exceeding 20 GHz. However, current state-of-the-art PICs still suffer from high processing losses in the optical domain, necessitating careful design of the electrical RF domain. This study delves into the critical challenges of designing RF front-ends for microwave photonic radars, including stability, noise minimization, and intermodulation distortion reduction. To demonstrate the feasibility of the proposed design, a functional prototype is constructed, achieving a total power gain of 107 dB (radar system at 10 GHz) while minimizing signal noise degradation. Furthermore, a comprehensive demonstration of the RF front-end, encompassing both optical RF signal generation and experimental measurements of a rotor blade’s Doppler fingerprint with 0.5 Hz resolution, validates the proposed system’s performance.