Due to its large electric dipole moment, the Rydberg atom exhibits a strong response to weak electric fields, hence it is regarded as a highly promising atomic antenna. However, to enhance the reception sensitivity, split-ring resonators are needed normally, which will brings sensing blind spots. Thus it is not conducive to the application of full-coverage space communication. Here we propose that an atomic antenna with an asymmetric parallel-plate resonator, can not only enhance the received signal, but also eliminate sensing blind spots (pattern roundness can reach 7.8 dB while the split-ring resonator can be up to 39 dB). We analyze the influence of structural parameters on the field enhancement factor and directionality, and further discuss the limitation of the sensitivity by using thermal resistor noise theory.This work is expected to pave the way for the development of field-enhanced Rydberg atomic antennas that communicate without a blind spot.