This paper presents a non-isolated DC–DC boost topology with a high-voltage-gain ratio for renewable energy applications. The presented converter is suitable for converting the voltage from low-voltage sources, such as photovoltaic panels, to higher voltage levels. The proposed converter consists of a multiphase boost stage with an interleaving switching technique and a voltage multiplier cell to provide a voltage level at a reduced duty cycle. The interleaved boost stage consists of two legs and can be either fed from single or multiple voltage sources with the ability to control each source separately. The voltage multiplier cell can increase the voltage level by charging and discharging the capacitors. Several advantages are associated with the converter, such as reduced voltage stress on semiconductor elements and a scalable structure, where the number of voltage multiplier cells can be increased. The inductors in the interleaved boost stage share the input current equally, which reduces the conduction loss in the inductors. The input and the output of the converter share the same ground, and all active switches are low-side, which means no feedback or signal isolation is required. The theory of operation and steady-state analysis of the converter operating in the continuous conduction mode is presented. Components selections and efficiency analysis are presented and validated by comparative analysis and simulation results. A 0.195 kW experimental prototype was designed and implemented to convert the voltage from 20 V input source to 400 V output load, at 50 kHz. The test results show a high-performance of the converter as the maximum efficiency point is above 97%.