Population genetic theory states that adaptation most frequently occurs from standing genetic variation, which results from the interplay between different evolutionary processes including mutation, chromosomal rearrangements, drift, gene flow and selection. To date, empirical work focusing on the contribution of standing genetic variation to local adaptation in the presence of high gene flow has been limited to a restricted number of study systems. Marine organisms are excellent biological models to address this issue since many species have to cope with variable environmental conditions acting as selective agents despite high dispersal abilities. In this study, we examined how, demographic history, standing genetic variation linked to chromosomal rearrangements and shared polymorphism among glacial lineages contribute to local adaptation to environmental conditions in the marine fish, the capelin (Mallotus villosus). We used a comprehensive dataset of genome-wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,359 individuals collected from 31 spawning sites in the northwest Atlantic (North America and Greenland waters). First, we reconstructed the history of divergence among three glacial lineages and showed that they diverged from 3.8 to 1.8 MyA. Depending on the pair of lineages considered, historical demographic modelling provided evidence for divergence with gene flow and secondary contacts, shaped by barriers to gene flow and linked selection. We next identified candidate loci associated with reproductive isolation of these lineages. Given the absence of physical or geographic barriers, we thus propose that these lineages may represent three cryptic species of capelin. Within each of these, our analyses provided evidence for large ܰ and high gene flow at both historical and contemporary time scales among spawning sites.Furthermore, we detected a polymorphic chromosomal rearrangement leading to the coexistence of three haplogroups within the Northwest Atlantic lineage, but absent in the other two clades.Genotype-environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Altogether, our study shows that standing genetic variation associated with both chromosomal rearrangements and ancestral polymorphism contribute to local adaptation in the presence of high gene flow.