Most eukaryotic genes harbor multiple cleavage and polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms. APA regulation has been implicated in a diverse array of physiological and pathological conditions. While RNA sequencing tools that generate reads containing the PAS, named onSite reads, have been instrumental in identifying PASs, they have not been widely used. By contrast, a growing number of methods generate reads that are close to the PAS, named nearSite reads, including the 3' end counting strategy commonly used in single cell analysis. How these nearSite reads can be used for APA analysis, however, is poorly studied. Here, we present a computational method, named model-based analysis of alternative polyadenylation using 3' end-linked reads (MAAPER), to examine APA using nearSite reads. MAAPER uses a probabilistic model to predict PASs for nearSite reads with high accuracy and sensitivity, and examines different types of APA events, including those in 3'UTRs and introns, with robust statistics. We show MAAPER's accuracy with data from both bulk and single cell RNA samples and its applicability in unpaired or paired experimental designs. Our result also highlights the importance of using well annotated PASs for nearSite read analysis.