2021
DOI: 10.48550/arxiv.2108.13707
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters

Abstract: We study the wild bootstrap inference for instrumental variable (quantile) regressions in the framework of a small number of large clusters, in which the number of clusters is viewed as fixed and the number of observations for each cluster diverges to infinity. For subvector inference, we show that the wild bootstrap Wald test with or without using the cluster-robust covariance matrix controls size asymptotically up to a small error as long as the parameters of endogenous variables are strongly identified in a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 83 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?