With the continuous increase in global climate change and human activities, the risk of sudden debris flow disasters is becoming increasingly severe. In order to effectively evaluate and zone the potential hazards of debris flows, this paper proposes a method for zoning the potential sudden hazards of debris flows based on deep neural networks. According to hazard identification, ten risk indicators of potential sudden debris flows are determined. The risk indicators of a potential sudden debris flow in each region were used as the input factors of a deep trust network (DBN) composed of a back propagation (BP) neural network and a restricted Boltzmann machine (RBM). The DBN is pre-trained using the contrast divergence method to obtain the optimal value of the parameter set of the DBN model, and a BP network is set at the last layer of the DBN for fine-tuning to make the network optimal. Using the DBN model with the best parameters, the risk probability of debris flows corresponding to each region is taken as an output. The risk grade is divided, the risk degree of potential sudden debris flow in each region is analyzed, and the potential sudden debris flow risk in each region is divided individually. The results show that this method can effectively complete the risk zoning of sudden debris flow. Moreover, the cumulative contribution of the indicators selected by this method is significant, and the correlation of indicators is not significant, which can play a role in the risk assessment of potential sudden debris flow. This study not only provides new ideas and methods for risk assessment of sudden debris flow disasters, but also fills a gap in the field of geological hazard susceptibility mapping.