Given the poor track record to date of animal models for creating cardioprotective drugs, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been proposed as a therapeutically relevant human platform to guide target validation and cardiac drug development. Mitogen-Activated Protein Kinase Kinase Kinase Kinase-4 (MAP4K4) is an "upstream" member of the MAPK superfamily that is implicated in human cardiac muscle cell death from oxidative stress, based on gene silencing and pharmacological inhibition in hPSC-CMs. A further role for MAP4K4 was proposed in heart muscle cell death triggered by cardiotoxic anti-cancer drugs, given its reported activation in failing human hearts with doxorubicin (DOX) cardiomyopathy, and its activation acutely by DOX in cultured cardiomyocytes. Here, we report successful protection from DOX in two independent hPSC-CM lines, using two potent, highly selective MAP4K4 inhibitors. The MAP4K4 inhibitors enhanced viability and reduced apoptosis at otherwise lethal concentrations of DOX, and preserved cardiomyocyte function, as measured by spontaneous calcium transients, at sub-maximal ones. Notably, in contrast, no intereference was seen in tumor cell killing, caspase activation, or mitochondrial membrane dissipation by DOX, in human cancer cell lines. Thus, MAP4K4 is a plausible, tractable, selective therapeutic target in DOX-induced human heart muscle cell death. With earlier diagnosis and improved treatments for cancer, cardiovascular disease has become the main alternative cause of death in cancer survivors 1-4. This heightened risk is ascribable to the cardiac toxicity of several routine anti-cancer agents including, especially, anthracyclines like doxorubicin (DOX) 5. Though some relief can result from standard heart failure medications, no approved therapy apart from the iron chelator dexrazoxane addresses the responsible cytotoxic mechanisms and effector pathways operating in the damaged cardiomyocytes. For anthracyclines, these include diverse reported mediators-binding to nuclear topoisomerase 2β, thereby triggering DNA double-strand breaks, p53-dependent apoptosis, mitochondrial dysfunction, reactive oxygen species, and programmed iron-dependent cell death (ferroptosis) 1,6,7. Cardiotoxicity can be acute, early, or late; early intervention based on subclinical abnormalities may be key to averting the delayed or cumulative effects 8. Notably, acute toxicity is seen in up to 30% of patients receiving anthracyclines, soon after infusion 4. Current cardioprotection trials in cancer rely chiefly on routine heart failure medications (ACE inhibitors, β-blockers, angiotensin receptor blockers), which mitigate the symptoms and signs, with little or no demonstrated impact on cardiomyocyte death. Therapeutic progress has been hampered, in part, by the failure of animal models alone to predict clinical success in cardioprotection. For instance, nearly all strategies for protection in ischemic heart disease, a more intensively studied indication, have failed between phases I and I...