Abstract-This paper proposes a novel meta-heuristic optimization algorithm inspired by general grass plants fibrous root system, asexual reproduction, and plant development. Grasses search for water and minerals randomly by developing its location, length, primary root, regenerated secondary roots, and small branches of roots called hair roots. The proposed algorithm explore the bounded solution domain globally and locally. Globally using the best grasses survived by the last iteration, and the root system of the best grass obtained so far by the iteration process and locally uses the primary roots, regenerated secondary roots and hair roots of the best global grass. Each grass represents a global candidate solution, while regenerated secondary roots stand for the locally obtained solution. Secondary generated hair roots are equal to the problem dimensions. The performance of the proposed algorithm is tested using seven standard benchmark test functions, comparing it with other metaheuristic well-known and recently proposed algorithms.