The flow and seawater exchange rates have been predicted using a two-dimensional numerical model and a Lagrangian method for a semi-enclosed shallow bay where reclaiming and dredging works are scheduled. The wind effect on the flow and material transport has been emphasized, and a thirty-year mean value of wind has been considered in the numerical simulation. As a whole, even after the reclaiming and dredging arc conducted, the flow pattern looks similar to the original state. However, velocity variations up to 20% to 100% appear in the vicinity of the construction area. In the case of summer wind forcing, the seawater exchange rate increases from 71.6% to 82.9% after the reclaiming and dredging, as indicated by a particle-tracking method. On the contrary, in the case of winter wind forcing, the seawater exchange rate appears to be 97.2% under natural conditions but decreases slightly to 93.2% after the reclaiming and dredging. Thus, the wind forcing plays an important role in controlling the seawater exchange rates. The seawater exchange rate is further improved by 15% if the dredging is simultaneously carried out with the reclaiming. This suggests that the dredging can be an effective means to mitigate the variation of flow.