A mortise-tenon steel-tube scaffold, a new steel-tube scaffold, was presented based on ancient mortise-tenon joint in wood structure. Because of better joint mechanics and higher bearing capacity than coupler-type steel-tube scaffold, this new scaffold possesses good market potential. Based on an analysis of the bearing mechanism, a finite element numerical analysis model for the mortise-tenon steel-tube scaffold was established in this study, which was validated as reasonable and accurate by experiment data. Influencing laws of storey height, vertical member interval, X-bracing layout, overall structure height, height of bottom horizontal tube, and height of upper cantilever bar on the mortise-tenon steel-tube scaffold were determined through parameter analysis. A simplified calculation formula of ultimate bearing capacity was established, which verified by FEM results and test data. Research results provide important references for future in-depth studies and engineering applications of the mortise-tenon steel-tube scaffold.