Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Controlling the flow around a circular cylinder by the use of patterned surface roughness is investigated. In this study, experimental work to reduce drag coefficient of a circular cylinder was carried out with particular attention to change in the distribution of surface roughness. Drag coefficient of a circular cylinder having discretely patterned surface was compared with uniformly roughened surface. When the circular concave and convex patterns with relative surface roughness of about 1% of the diameter were added discretely to the surface, drag coefficient of a cylinder of the patterned roughness is lower than a cylinder with uniform surface roughness of the same degree, and remains approximately constant beyond the critical Reynolds number. Measurement of the pressure distribution indicated that circular cylinders with a lumped patterned roughness made it possible to reproduce a supercritical state in lower Reynolds number range. It was considered that the lumped patterned roughness changed the flow around the circular cylinder, causing a combining of the laminar separation and the turbulent separation. The drag force characteristics of the circular cylinders were well explained by the results of the pressure distribution measurement. In conclusion, it was found that density and arrangement of lumped roughness was the key factors in controlling the drag characteristics of a circular cylinder. It seems to be possible to adjust those two factors to optimize the drag coefficientReynolds number relationship. Methods in this study to control the drag characteristics in the vicinity of the critical Reynolds number can be applied to all of cylindrical structures in various fields.
Controlling the flow around a circular cylinder by the use of patterned surface roughness is investigated. In this study, experimental work to reduce drag coefficient of a circular cylinder was carried out with particular attention to change in the distribution of surface roughness. Drag coefficient of a circular cylinder having discretely patterned surface was compared with uniformly roughened surface. When the circular concave and convex patterns with relative surface roughness of about 1% of the diameter were added discretely to the surface, drag coefficient of a cylinder of the patterned roughness is lower than a cylinder with uniform surface roughness of the same degree, and remains approximately constant beyond the critical Reynolds number. Measurement of the pressure distribution indicated that circular cylinders with a lumped patterned roughness made it possible to reproduce a supercritical state in lower Reynolds number range. It was considered that the lumped patterned roughness changed the flow around the circular cylinder, causing a combining of the laminar separation and the turbulent separation. The drag force characteristics of the circular cylinders were well explained by the results of the pressure distribution measurement. In conclusion, it was found that density and arrangement of lumped roughness was the key factors in controlling the drag characteristics of a circular cylinder. It seems to be possible to adjust those two factors to optimize the drag coefficientReynolds number relationship. Methods in this study to control the drag characteristics in the vicinity of the critical Reynolds number can be applied to all of cylindrical structures in various fields.
<p> Since the longest stay cables of the Tatara Bridge are about 460 m, various wind tunnel tests were carried out. As a result of the tests, it was found that an indent cable is very effective against rain vibration and the indent cables were applied to the bridge for the first time in the world. It was also found that smooth wind flow without rain is possible to generate large amplitude vibration. As it was thought that this vibration was rarely generated due to actual wind condition, it was decided that countermeasures against this vibration were studied based on monitoring results, if necessary. Monitoring of the cables has been conducted with measurement of wind and rain fall. Although medium amplitude vibration, which was not rain vibration, was observed on the short indent stay cables, harmful vibration such as rain vibration has not been observed until now. Therefore, it was confirmed that the indent cable is effective against rain vibration.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.